Clinical Policy Title: Transcutaneous Electrical Nerve Stimulators (TENS)

Clinical Policy Number: 03.02.04

Effective Date: Oct. 1, 2015
Initial Review Date: June 17, 2015
Most Recent Review Date: July 15, 2015
Next Review Date: June, 2016

Related Policies:
None

ABOUT THIS POLICY: AmeriHealth Caritas Louisiana has developed clinical policies to assist with making coverage determinations. AmeriHealth Caritas Louisiana's clinical policies are based on guidelines from established industry sources, such as the Centers for Medicare & Medicaid Services (CMS), state regulatory agencies, the American Medical Association (AMA), medical specialty professional societies, and peer-reviewed professional literature. These clinical policies along with other sources, such as plan benefits and state and federal laws and regulatory requirements, including any state- or plan-specific definition of "medically necessary," and the specific facts of the particular situation are considered by AmeriHealth Caritas Louisiana when making coverage determinations. In the event of conflict between this clinical policy and plan benefits and/or state or federal laws and/or regulatory requirements, the plan benefits and/or state and federal laws and/or regulatory requirements shall control. AmeriHealth Caritas Louisiana's clinical policies are for informational purposes only and not intended as medical advice or to direct treatment. Physicians and other health care providers are solely responsible for the treatment decisions for their patients. AmeriHealth Caritas Louisiana’s clinical policies are reflective of evidence-based medicine at the time of review. As medical science evolves, AmeriHealth Caritas Louisiana will update its clinical policies as necessary. AmeriHealth Caritas Louisiana’s clinical policies are not guarantees of payment.

Coverage policy

A. AmeriHealth Caritas Louisiana considers the use of Transcutaneous Electrical Nerve Stimulators (TENS) to be clinically proven and, therefore, medically necessary when the following criteria are met:
 1. Painful diabetic neuropathy.
 2. Postoperative pain for no more than one month
 3. Chronic pain syndromes, excluding back pain, not responsive to physical therapy and pharmacotherapy after two month trial of alternative methods of pain management.

B. AmeriHealth Caritas Louisiana considers the use of Transcutaneous Electrical Nerve Stimulators (TENS) to be investigational and, therefore, NOT medically necessary for following conditions for which evidence no longer supports utilization:
 1. Chronic or acute low back pain.
 2. Migraines.
 3. Childbirth
 4. Deep abdominal or pelvic pain
 5. All other uses of TENS not described.

Policy contains:
- Transcutaneous Electrical Nerve Stimulator
- Diabetic neuropathy
- Chronic pain syndromes
- Low back pain
Limitations:

All other uses of Transcutaneous Electrical Nerve Stimulators are not medically necessary.

NOTE: The following CPT codes are not included in the Medicaid fee schedule for Louisiana:

64550 - Application of surface (transcutaneous) neurostimulator
A4558 - Conductive gel or paste, for use with electrical device (e.g., TENS, NMES), per oz
A4595 - Electrical stimulator supplies, 2 lead, per month, (e.g. TENS, NMES
E0720 - Transcutaneous electrical nerve stimulation (TENS) device, 2 lead, localized stimulation
E0730 - Transcutaneous electrical nerve stimulation (TENS) device, 4 or more leads, for multiple nerve stimulation

Alternative covered services:

- Surgical treatment.
- Medical treatment such as antiepileptics

Background

Transcutaneous Electrical Nerve Stimulation (TENS) uses low level electrical currents typically from a battery-based device through surface electrodes with the goal of alleviating pain. Wall and Sweet’s sentinel observations on pain reduction in eight patients with chronic cutaneous pain was published in 1967 in Science. The first patent on a device incorporating the concepts behind TENS was obtained in 1974 by D. Maurer on the Medtronics Corporation (Patent # US3817254 A). The concept of TENS therapy is based upon the gate theories of pain. A noxious electrical current is thought to block reception in the brain of pain stimuli originating through pain fibers more distal. However there are other theories on how electrical stimulation can reduce perception of pain including: Presynaptic inhibition in the dorsal horn of the spinal cord and increase in endorphins.

The device is generally considered safe with very few in any side-effects. The medical literature has not reliably demonstrated efficacy of the therapy as it has been used for a wide variety of pain etiologies, and has not had standardization of the electrical frequency, pulse amplitude, pulse duration and physical placement locations. Many studies have not been well controlled. A number of review studies have been written with wide variation in determinations of the effectiveness of this modality. Clinical trials have been in place for a wide variety of pain from that of childbirth to low back pain to acute post-operative pain.

Most studies have suffered from low number of patients studied, failure of having adequate controls with sham TENS and by not standardizing the stimuli. Olsen et al performed a trial of high frequency versus low frequency TENS for pain management in the post-partum period. While they found that the high frequency stimulation gave better pain management control, the numbers were too low to draw meaningful conclusions (12 in the study group and 9 in the control population). However, Limoges et al found no significant differences in pain for patients undergoing screening flexible sigmoidoscopy.
The use of TENS for patients with painful diabetic neuropathy has been found to be effective in studies by Bil et al, and such investigators as Jin, Moharić, and Forst. However, there is a significant difference in pain management compared to some anticonvulsants (e.g., pregabalin, gabapentin), antidepressants (e.g., amitriptyline, duloxetine), opioids (e.g., morphine sulfate, oxycodone), or capsaicin cream. TENS must be considered to be one of multiple options in the management of chronic pain from diabetic neuropathy.

TENS units have been found to provide pain relief in the postoperative period. Baki et al found in a study of forty matched patients, that the use of TENS for thoracotomy patients was significant but not as complete as paravertebral block. Solak found in another study of forty matched patients who had thoracotomy, that by the third postoperative day, patients using TENS unit were more comfortable than those using patient controlled analgesics with narcotics.

However, initial enthusiasm for the use of TENS for the management of low back pain, labor, colonoscopy, headache, temporomandibular joint syndrome, or other procedures within the body cavities, have not proved to be any more successful than placebo. The clinical evidence does not support use of transcutaneous electrical stimulation for such pain syndromes.

Methods

Searches

AmeriHealth Caritas Louisiana searched PubMed and the databases of:
- UK National Health Services Centre for Reviews and Dissemination.
- Agency for Healthcare Research and Quality’s National Guideline Clearinghouse and other evidence-based practice centers.
- The Centers for Medicare & Medicaid Services.

Searches were conducted on June 1, 2015, using terms “transcutaneous electrical nerve stimulator” or “TENS.”

Included were:
- **Systematic reviews**, which pool results from multiple studies to achieve larger sample sizes and greater precision of effect estimation than in smaller primary studies. Systematic reviews use predetermined transparent methods to minimize bias, effectively treating the review as a scientific endeavor, and are thus rated highest in evidence-grading hierarchies.
- **Guidelines based on systematic reviews**.
- **Economic analyses**, such as cost-effectiveness, and benefit or utility studies (but not simple cost studies), reporting both costs and outcomes — sometimes referred to as efficiency studies — which also rank near the top of evidence hierarchies.

Findings
Summary of clinical evidence:

<table>
<thead>
<tr>
<th>Citation</th>
<th>Content, Methods, Recommendations</th>
</tr>
</thead>
</table>
| Abruzzi (2012) | • TENS associated with pharmacological analgesia provides pain relief compared to the placebo
| | • TENS in postoperative thoracic surgery patients both approached by thoracotomy and sternotomy. In the sternotomy it also provides more effective pain relief compared to
| | pharmacological analgesia alone, but has no significant effect on pulmonary function. |
| | • The studies had different conclusions and outcomes making a full determination of outcomes to be individualized. |
| Keller (2007) | • Comparison of multiple modalities for management of low back pain shows TENS is lowest in impact
| | • For acute LBP, the effect size of non-steroidal anti-inflammatory drugs (NSAIDs) and manipulation were only modest (ES: 0.51 and 0.40, respectively) and there was no
| | effect of exercise (ES: 0.07).
| | • For chronic LBP, acupuncture, behavioral therapy, exercise therapy, and NSAIDs had the largest effect sizes (SMD: 0.61, 0.57, and 0.52, and RR: 0.61, respectively), all
| | with only a modest effect.
| | • Transcutaneous electric nerve stimulation and manipulation had small effect sizes (SMD: 0.22 and 0.35, respectively). |
| Brosseau (2002) | • Meta-analysis with five trials were included, with 170 subjects randomized to the placebo group receiving sham TENS and 251 subjects receiving active TENS (153 for
| | conventional mode, 98 for acupuncture-like TENS).
| | • The results of the meta-analysis present no evidence to support the use or nonuse of TENS alone in the treatment of chronic low back pain. |

Other policies:

<table>
<thead>
<tr>
<th>Organization</th>
<th>Policy</th>
</tr>
</thead>
</table>
| CMS | LCD L11506 Transcutaneous Electrical Nerve Stimulator coverage:
| | • Acute post-operative pain for up to 30 days
| | • Chronic pain other than low back pain
| | • Chronic low back pain only if enrolled in an approved clinical study. |

Glossary
Diabetic Neuropathy—damage to the peripheral nerves especially in those nerves with the greatest distance from the central nervous system. Peripheral neuropathy or diabetic neuropathy represents damage that causes pain and difficulty in position.

Gate Control Theory—the concepts that noxious stimuli reach “nerve gates” at the spinal cord level. Pain signals can be blocked by other stimuli based upon strength and intensity of signal. The electrical impulses from TENS are felt to take advantage of gate control theory to be effective.

TENS—Transcutaneous
Related policies
AmeriHealth Caritas Louisiana Utilization Management program description.

References

Professional society guidelines/others:

Peer-reviewed references:

Hurlow A, Bennett MI, Robb KA, Johnson MI, Simpson KH, Oxberry SG. Transcutaneous electric nerve stimulation (TENS) for cancer pain in adults. Cochrane Database Syst Rev. 2012 Mar 14;3

Centers for Medicare and Medicaid Services (CMS) national coverage determination (NCDs):

National Coverage Determination (NCD) for Transcutaneous Electrical Nerve Stimulators (TENS) (280.13) .

Transcutaneous Electrical Nerve Stimulation (TENS) for chronic low back pain (CLBP)
Local coverage determinations (LCDs):

Commonly submitted codes

Below are the most commonly submitted codes for the service(s)/item(s) subject to this policy. This is not an exhaustive list of codes. Providers are expected to consult the appropriate coding manuals and bill accordingly.

<table>
<thead>
<tr>
<th>CPT Code</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>64550</td>
<td>Application of surface (transcutaneous) neurostimulator</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICD-9 Code</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.18</td>
<td>Other acute postoperative pain</td>
<td></td>
</tr>
<tr>
<td>338.21</td>
<td>Chronic pain due to trauma</td>
<td></td>
</tr>
<tr>
<td>338.22</td>
<td>Chronic post-thoracotomy pain</td>
<td></td>
</tr>
<tr>
<td>338.28</td>
<td>Other chronic postoperative pain</td>
<td></td>
</tr>
<tr>
<td>338.29</td>
<td>Other chronic pain</td>
<td></td>
</tr>
<tr>
<td>338.4</td>
<td>Chronic pain syndrome</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICD-10 Code</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>G89.18</td>
<td>Other acute postoperative pain</td>
<td></td>
</tr>
<tr>
<td>G89.21</td>
<td>Chronic pain due to trauma</td>
<td></td>
</tr>
<tr>
<td>G89.22</td>
<td>Chronic post-thoracotomy pain</td>
<td></td>
</tr>
<tr>
<td>G89.28</td>
<td>Other chronic postprocedural pain</td>
<td></td>
</tr>
<tr>
<td>G89.4</td>
<td>Chronic pain syndrome</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCPCS Code</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4558</td>
<td>Conductive gel or paste, for use with electrical device (e.g., TENS, NMES), per oz</td>
<td></td>
</tr>
<tr>
<td>A4595</td>
<td>Electrical stimulator supplies, 2 lead, per month, (e.g. TENS, NMES)</td>
<td></td>
</tr>
<tr>
<td>E0720</td>
<td>Transcutaneous electrical nerve stimulation (TENS) device, 2 lead, localized stimulation</td>
<td></td>
</tr>
<tr>
<td>E0730</td>
<td>Transcutaneous electrical nerve stimulation (TENS) device, 4 or more leads, for multiple nerve stimulation</td>
<td></td>
</tr>
</tbody>
</table>